Экономическое обозрение

Ученые из Казани создали охлаждающий кристалл для квантовых технологий

Ученые из Казани создали охлаждающий кристалл для квантовых технологий
Специалистам из Казанского федерального университета (КФУ) удалось вырастить в лабораторных условиях уникальный кристалл, который в будущем будет необходим для того, чтобы создавать лазерные установки, телескопы на борту спутников, суперкомпьютеры и высокотехнологичную электронику.


Такая разработка способна охлаждать окружающие вещества до максимально низких температур. Это необходимо для функционирования квантового компьютера, который может функционировать только при минимальных пределах температуры (−273,15 °C). Именно в таких условиях эффективнее всего проводить квантовые вычисления. Кроме того, подобное охлаждение используют для электроники орбитальных спутников, где крайне важна компактность.

Уникальный материал от казанских ученых выглядит как пластина 4 на 4 миллиметра в 0,1 миллиметра толщиной. Это литиевый тетрофторид гадолиния (формула LiGdF4). Пластинчатая форма подходит для проведения экспериментов, в рамках которых изучают магнитные и физические свойства тестируемого образца.

Кристаллическую разработку создали в лабораторных условиях отдела магнитной радиоспектроскопии и квантовой электроники на кафедре Института физики КФУ. На этой научной площадке уже многие годы изучают и производят кристаллы и материалы из редкоземельных элементов.

Помощь местным ученым оказывали коллеги из Института физических проблем. Работы осуществлялись при поддержке грантов фонда науки Российской федерации. Именно казанские физики удалось обнаружить необходимый анизотропный магнитокалорический эффект, который позволяет добиться низких температур, которые максимально приближены к показаниям абсолютного нуля.

По сути, казанские ученые открыли новые горизонты в области передовых квантовых электронных технологий, сделав более доступным производство квантовых компьютеров. Как пояснила руководитель научной деятельности кафедры научно-исследовательской лаборатории в Казани Ирина Романова, эти материалы являются самыми перспективными, если речь идет о развитии квантовых технологий.

Такие прорывные возможности в электронике несут в себе огромное значение для науки, технологического прогресса и экономики. Квантовые компьютеры обладают суперпроизводительностью, поскольку не используют двоичный код, как обычные. Вычислительный процесс производится моментально с применением кубитов, у которых одновременно несколько состояний. Обычному ПК для такой объемной производительности пришлось бы работать несколько лет, в то время как квантовый справится за секунду.
Вот несколько сфер применения таких технологий:

– Аэрокосмическая отрасль. Для расчетов траектории полетов и нагрузок.

– Криптография. Для расшифровки кодирования и создания новых способов шифрования.

– Искусственный интеллект. Для анализа миллионов вариантов развития событий.

– Инвестиции. Для балансирования рисков и анализа волатильности.

– Нефтедобыча. Для моделирования месторождений и способов добычи.

– Химия. Для точного моделирования молекулярных реакций.

С помощью таких технологий человечество в ближайшем будущем сможет решать самые сложные задачи, а у отечественной науки будут для этого все возможности.

Автор:

Использованы фотографии: pxhere.com

Мы в Мы в Яндекс Дзен