Искусственный интеллект будет помогать в производстве новых материалов
В последние годы мир науки и технологий активно движется к интеграции искусственного интеллекта и машинного обучения в различные сферы, включая материаловедение. Ученые Центра НТИ «Цифровое материаловедение: новые материалы и вещества» МГТУ им. Н.Э. Баумана и химического факультета МГУ работают над инновационным продуктом – сервисом, который использует графовые нейронные сети для прогнозирования свойств новых материалов. Это решение открывает новые горизонты в создании эффективных и уникальных веществ.
Технология, стоящая за проектом
Заведующий лабораторией Интеллектуального химического дизайна МГУ Артем Митрофанов рассказал о предпосылках разработки. Новый сервис представляет собой научное программное обеспечение, объединяющее модели машинного обучения и удобный пользовательский интерфейс. Это особенно важно, так как многие ученые и инженеры в области материаловедения не имеют глубоких знаний в программировании или Data Science. Поэтому интуитивно понятный интерфейс позволит им легко использовать методы искусственного интеллекта для предварительного анализа и прогнозирования свойств создаваемых материалов.
Проблема проб и ошибок в материалообразовании
Традиционно разработка новых материалов основана на методе проб и ошибок, что приводит к высоким рискам и низкому проценту успеха. Исследователи чаще всего ориентируются на современные и проверенные материалы, что минимизирует затраты на проверку гипотез, но также ограничивает горизонт поиска новых перспективных веществ. Это явление известно как «эффект фонаря», когда ученые ищут только в хорошо освещенной зоне, оставляя в тени множество потенциально значимых направлений исследований.
Преимущества машинного обучения
Система, разрабатываемая специалистами, станет «предварительным оценщиком» свойств материалов на этапе прогнозирования рисков. Применение машинного обучения значительно увеличит эффективность процесса. Графовые нейронные сети – ключевой элемент в этой технологии, позволяют учитывать сложные связи между различными веществами.
Графовые нейронные сети помогают анализировать данные, представленные в виде узлов и ребер. Примером могут служить рекомендации в социальных сетях или потоковых сервисах, где алгоритмы определяют связи между пользователями и их предпочтениями, предлагая наилучшие варианты.
Скорость и эффективность
Одним из основных преимуществ использования нейросетей для дизайна новых материалов является значительное сокращение времени, необходимого для исследований. Например, в рамках нового проекта планируется существенно ускорить квантово-химические расчеты, которые могут занимать десятки часов, до секунд с помощью моделей машинного обучения. Это не только повысит производительность, но и снизит затраты на вычислительные ресурсы.
Будущее материаловедения с AI
Интеграция современных технологий в процесс разработки новых материалов открывает перед учеными широкие перспективы. Предполагается, что сервиса, использующего графовые нейронные сети, позволит значительно увеличить скорость и точность прогнозирования свойств материалов, что в свою очередь приведет к созданию более устойчивых, эффективных и инновационных веществ.
Таким образом, работа ученых МГТУ и МГУ может стать важным шагом в будущем материаловедения, расширяя границы возможностей и сохраняя фокус на новых направлениях и неожиданных открытиях. Использование искусственного интеллекта в этой области не только упрощает научные исследования, но и значительно увеличивает шанс на успешные результаты.
Технология, стоящая за проектом
Заведующий лабораторией Интеллектуального химического дизайна МГУ Артем Митрофанов рассказал о предпосылках разработки. Новый сервис представляет собой научное программное обеспечение, объединяющее модели машинного обучения и удобный пользовательский интерфейс. Это особенно важно, так как многие ученые и инженеры в области материаловедения не имеют глубоких знаний в программировании или Data Science. Поэтому интуитивно понятный интерфейс позволит им легко использовать методы искусственного интеллекта для предварительного анализа и прогнозирования свойств создаваемых материалов.
Проблема проб и ошибок в материалообразовании
Традиционно разработка новых материалов основана на методе проб и ошибок, что приводит к высоким рискам и низкому проценту успеха. Исследователи чаще всего ориентируются на современные и проверенные материалы, что минимизирует затраты на проверку гипотез, но также ограничивает горизонт поиска новых перспективных веществ. Это явление известно как «эффект фонаря», когда ученые ищут только в хорошо освещенной зоне, оставляя в тени множество потенциально значимых направлений исследований.
Преимущества машинного обучения
Система, разрабатываемая специалистами, станет «предварительным оценщиком» свойств материалов на этапе прогнозирования рисков. Применение машинного обучения значительно увеличит эффективность процесса. Графовые нейронные сети – ключевой элемент в этой технологии, позволяют учитывать сложные связи между различными веществами.
Графовые нейронные сети помогают анализировать данные, представленные в виде узлов и ребер. Примером могут служить рекомендации в социальных сетях или потоковых сервисах, где алгоритмы определяют связи между пользователями и их предпочтениями, предлагая наилучшие варианты.
Скорость и эффективность
Одним из основных преимуществ использования нейросетей для дизайна новых материалов является значительное сокращение времени, необходимого для исследований. Например, в рамках нового проекта планируется существенно ускорить квантово-химические расчеты, которые могут занимать десятки часов, до секунд с помощью моделей машинного обучения. Это не только повысит производительность, но и снизит затраты на вычислительные ресурсы.
Будущее материаловедения с AI
Интеграция современных технологий в процесс разработки новых материалов открывает перед учеными широкие перспективы. Предполагается, что сервиса, использующего графовые нейронные сети, позволит значительно увеличить скорость и точность прогнозирования свойств материалов, что в свою очередь приведет к созданию более устойчивых, эффективных и инновационных веществ.
Таким образом, работа ученых МГТУ и МГУ может стать важным шагом в будущем материаловедения, расширяя границы возможностей и сохраняя фокус на новых направлениях и неожиданных открытиях. Использование искусственного интеллекта в этой области не только упрощает научные исследования, но и значительно увеличивает шанс на успешные результаты.
- Павел Журавлев
- pxhere.com
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас
Назло Лондону: очередной прибыльный западный банк будет пущен с молотка в России
Несмотря на стремление наладить отношения с США и ожидание геополитической оттепели, западные компании уходят из России....
Помочь невозможно: РФ «разрезала» энергосистему Украины натрое
У Киева огромные проблемы, теперь ему даже западные «партнеры» не в состоянии помочь....
Пекин испуган: танкеры с российским СПГ для Китая исчезают с радаров
Пекин играет в сложную геополитическую игру с привкусов дешевых углеводородов....
Первый пошел: Болгария начала грабить обездоленный «Лукойл»
Не дожидаясь истечения срока введения ограничений, София предпринимает недружественные шаги к частной собственности....
Москва отдает конкуренту Индию и Китай из-за кабального дисконта на нефть РФ
Отрасль приспосабливается в новым санкциями Соединенных Штатов. Процесс адаптации продлится некоторое время....
Нет будущего: государству придется приютить «Лукойл», теряющего $14 миллиардов
Как утверждают аналитики, руководство частного энергетического гиганта теперь может быть даже не против национализации....
Танкеры возвращаются в порт разгрузки: в КНР начали отдавать партии СПГ РФ обратно
Помимо санкций, еще много препятствий может встретиться на пути российского охлажденного газа, следующего к заказчику....
Киев в ловушке: Россия «закрыла» Украине солнце
Украинский националистический режим играет с огнем, провоцируя Москву на ответные удары ....
Новому среднемагистральнику МС-21 прилично «подрезали» крылья
Производитель пояснил основные причины существенных изменений в летных характеристиках....
«Это предательство!»: депутаты осудили план «поворота» Оби в Узбекистан
Обсуждение проекта о частичной переброске вод реки Оби из российской Сибири в Узбекистан вызвало споры законодателей и экспертов...
Как Wildberries и Ozon разоряют людей
О политике российских маркетплейсов, их отношениях с покупателями, продавцами и работниками складов и ПВЗ рассказывают экономисты Олег Комолов и Рафаэль...
США отсрочили санкции против «Лукойла», но уже слишком поздно
Идя навстречу партнеров, Вашингтон продлевает льготный срок по введения ограничений, но никаких отсрочек уже не хватит, чтобы спасти ситуацию....
Амбициозный план Путина: Россия вступила в смертельную гонку с Западом
Россия предпримет попытки войти в мировую гонку редкоземельных металлов, передает CNBC. Как считают эксперты, Москва может начать сотрудничать в этой области с...
Слишком выгодно, чтобы быть правдой: новые схемы обмана захлестнули страну
МВД назвало самые опасные схемы обмана: россиян массово разводят на «лёгкий заработок» и «выгодные кредиты»...
Лже-бедняков выведут на «чистую воду»: в России начата масштабная проверка
В 2026 году Минтруд планирует протестировать оценку теневых доходов бедных семей. Не секрет, что под этим статусом сегодня скрывается немало тех, кто,...
Пенсионерская схема уничтожает рынок: семьи выкидывают из своих же квартир
Тысячи семей пострадали от новой схемы на рынке жилья — продавцы аннулируют сделки, заявляя о мошенничестве...