
Российские ученые разработали модель «искусственного нейрона»
Ученые Санкт-Петербургского государственного электротехнического университета «ЛЭТИ» разработали инновационную модель искусственного нейрона для использования в интерфейсах «мозг-компьютер».
Данная разработка направлена на создание более эффективных и мощных компьютерных систем, которые превосходят по характеристикам традиционные компьютеры, основанные на архитектуре фон Неймана.
Современные компьютеры, построенные на базе транзисторов, достигли своего предела в плане миниатюризации, скорости обработки данных и энергоэффективности. Их архитектура, разработанная еще в середине прошлого века, становится низкоэффективной перед лицом задач, требующих обработки огромных объемов информации, характерных для современных приложений, таких как искусственный интеллект, машинное обучение и обработка больших данных. Потребление энергии постоянно растет, а размеры компьютеров, несмотря на достижения микроэлектроники, не уменьшаются так стремительно, как хотелось бы.
Это стимулирует ученых искать альтернативные вычислительные парадигмы, которые могли бы преодолеть существующие ограничения. Одним из самых многообещающих направлений в этой области является нейроморфная электроника – подход, имитирующий принципы работы человеческого мозга. В основе нейроморфных систем лежат так называемые искусственные нейроны, которые обрабатывают информацию, используя импульсные сигналы, или «спайки», подобно тому, как это происходит в биологических нейронных сетях.
Информация кодируется не в непрерывном аналоговом сигнале, а во временной последовательности дискретных импульсов, что позволяет значительно повысить эффективность обработки информации. Главным компонентом нейроморфных вычислений является синаптическая память, которая обеспечивает хранение и обработку информации на уровне связей между искусственными нейронами. Это позволяет создавать системы, способные обучаться и адаптироваться к новым данным, подобно биологическому мозгу.
Разработанная в ЛЭТИ модель искусственного нейрона отличается способностью генерировать биологически реалистичные спайки. Это значит, что сигналы, генерируемые искусственным нейроном, очень близки по своим характеристикам к сигналам, передаваемым настоящими нейронами в головном мозге человека.
Эта точность моделирования – важный фактор для успешного создания эффективных интерфейсов «мозг-компьютер». Разработчики обратили особое внимание на вариативность порогов переключения мемристоров – ключевых элементов искусственного нейрона, отвечающих за генерацию спайков. Успешное моделирование этой вариативности – значительное достижение, так как позволяет создавать более реалистичные и гибкие нейронные сети.
Интерфейсы «мозг-компьютер», основанные на нейроморфных системах, могут помочь людям с ограниченными физическими возможностями легче управлять протезами или восстанавливать утраченные функции организма. Точность и энергоэффективность разработанной модели существенно повышает потенциал этих технологий.
Дальнейшие исследования будут сосредоточены на совершенствовании модели искусственного нейрона, разработке эффективных методов проектирования нейроморфных систем, создании соответствующих аппаратных компонентов и разработке необходимого программного обеспечения.
Кроме того, нужно решить проблемы интеграции нейроморфных систем с существующими вычислительными платформами и разработать стандарты для взаимодействия различных компонентов нейроморфной архитектуры. Внедрение подобных технологий сулит не только создание более мощных и энергоэффективных компьютеров, но и революционизирует множество отраслей, от медицины до искусственного интеллекта.
Мозг-компьютерный интерфейс (МКИ) – это технология, которая позволяет взаимодействовать с компьютером или другими устройствами, используя только силу мысли. В отличие от традиционных нейрокомпьютерных интерфейсов, которые используют сигналы от периферических нервов, в МКИ информация передается напрямую от мозга. Это значит, что, например, вы можете управлять каким-либо устройством, просто представляя, как вы хотите, чтобы оно действовало.
За последние пару десятков лет такие системы стали довольно популярными и нашли свое применение как в медицине, так и в научных исследованиях. Существуют различные варианты реализации МКИ, которые отличаются по своим характеристикам и способам использования. В клинических условиях, например, с помощью таких интерфейсов проводятся сессии для управления движениями, основанные на идеомоторной активности. Это особенно полезно для людей, которые восстанавливаются после инсульта.
Еще одна интересная область применения – это нейрообратная связь, которая используется для помощи пациентам с различными неврологическими расстройствами, такими как эпилепсия. С помощью этой техники пациенты могут научиться контролировать свои мозговые волны, что в свою очередь помогает им улучшать свое состояние и справляться с симптомами заболеваний.
Кроме реабилитации, замкнутые системы, которые измеряют активность мозга и предоставляют обратную связь, могут быть полезными для научных исследований. С помощью таких систем исследователи могут изучать нейрофизиологические процессы, которые лежат в основе формирования команд или мониторинга эффективности обучения. Это также открывает возможности для проведения экспериментов в закрытой системе, где можно моделировать изменения состояния мозга в течение исследования.
Таким образом, мозг-компьютерные интерфейсы представляют собой многообещающую технологию. Они могут не только помочь людям восстанавливать утраченные функции, но и больше узнать о том, как работает наш мозг. С каждым годом появляются новые возможности для применения МКИ в самых разных сферах.
Разработка ведется в рамках научно-исследовательской политики программы развития СПбГЭТУ «ЛЭТИ» «Приоритет 2030».
Напомним, что несколькими днями ранее мы уже рассказывали нашим читателям, что инновационную технологию 3D-печати магнитов разработали на Урале.
Данная разработка направлена на создание более эффективных и мощных компьютерных систем, которые превосходят по характеристикам традиционные компьютеры, основанные на архитектуре фон Неймана.
Современные компьютеры, построенные на базе транзисторов, достигли своего предела в плане миниатюризации, скорости обработки данных и энергоэффективности. Их архитектура, разработанная еще в середине прошлого века, становится низкоэффективной перед лицом задач, требующих обработки огромных объемов информации, характерных для современных приложений, таких как искусственный интеллект, машинное обучение и обработка больших данных. Потребление энергии постоянно растет, а размеры компьютеров, несмотря на достижения микроэлектроники, не уменьшаются так стремительно, как хотелось бы.
Это стимулирует ученых искать альтернативные вычислительные парадигмы, которые могли бы преодолеть существующие ограничения. Одним из самых многообещающих направлений в этой области является нейроморфная электроника – подход, имитирующий принципы работы человеческого мозга. В основе нейроморфных систем лежат так называемые искусственные нейроны, которые обрабатывают информацию, используя импульсные сигналы, или «спайки», подобно тому, как это происходит в биологических нейронных сетях.
Информация кодируется не в непрерывном аналоговом сигнале, а во временной последовательности дискретных импульсов, что позволяет значительно повысить эффективность обработки информации. Главным компонентом нейроморфных вычислений является синаптическая память, которая обеспечивает хранение и обработку информации на уровне связей между искусственными нейронами. Это позволяет создавать системы, способные обучаться и адаптироваться к новым данным, подобно биологическому мозгу.
Разработанная в ЛЭТИ модель искусственного нейрона отличается способностью генерировать биологически реалистичные спайки. Это значит, что сигналы, генерируемые искусственным нейроном, очень близки по своим характеристикам к сигналам, передаваемым настоящими нейронами в головном мозге человека.
Эта точность моделирования – важный фактор для успешного создания эффективных интерфейсов «мозг-компьютер». Разработчики обратили особое внимание на вариативность порогов переключения мемристоров – ключевых элементов искусственного нейрона, отвечающих за генерацию спайков. Успешное моделирование этой вариативности – значительное достижение, так как позволяет создавать более реалистичные и гибкие нейронные сети.
Интерфейсы «мозг-компьютер», основанные на нейроморфных системах, могут помочь людям с ограниченными физическими возможностями легче управлять протезами или восстанавливать утраченные функции организма. Точность и энергоэффективность разработанной модели существенно повышает потенциал этих технологий.
Дальнейшие исследования будут сосредоточены на совершенствовании модели искусственного нейрона, разработке эффективных методов проектирования нейроморфных систем, создании соответствующих аппаратных компонентов и разработке необходимого программного обеспечения.
Кроме того, нужно решить проблемы интеграции нейроморфных систем с существующими вычислительными платформами и разработать стандарты для взаимодействия различных компонентов нейроморфной архитектуры. Внедрение подобных технологий сулит не только создание более мощных и энергоэффективных компьютеров, но и революционизирует множество отраслей, от медицины до искусственного интеллекта.
Мозг-компьютерный интерфейс (МКИ) – это технология, которая позволяет взаимодействовать с компьютером или другими устройствами, используя только силу мысли. В отличие от традиционных нейрокомпьютерных интерфейсов, которые используют сигналы от периферических нервов, в МКИ информация передается напрямую от мозга. Это значит, что, например, вы можете управлять каким-либо устройством, просто представляя, как вы хотите, чтобы оно действовало.
За последние пару десятков лет такие системы стали довольно популярными и нашли свое применение как в медицине, так и в научных исследованиях. Существуют различные варианты реализации МКИ, которые отличаются по своим характеристикам и способам использования. В клинических условиях, например, с помощью таких интерфейсов проводятся сессии для управления движениями, основанные на идеомоторной активности. Это особенно полезно для людей, которые восстанавливаются после инсульта.
Еще одна интересная область применения – это нейрообратная связь, которая используется для помощи пациентам с различными неврологическими расстройствами, такими как эпилепсия. С помощью этой техники пациенты могут научиться контролировать свои мозговые волны, что в свою очередь помогает им улучшать свое состояние и справляться с симптомами заболеваний.
Кроме реабилитации, замкнутые системы, которые измеряют активность мозга и предоставляют обратную связь, могут быть полезными для научных исследований. С помощью таких систем исследователи могут изучать нейрофизиологические процессы, которые лежат в основе формирования команд или мониторинга эффективности обучения. Это также открывает возможности для проведения экспериментов в закрытой системе, где можно моделировать изменения состояния мозга в течение исследования.
Таким образом, мозг-компьютерные интерфейсы представляют собой многообещающую технологию. Они могут не только помочь людям восстанавливать утраченные функции, но и больше узнать о том, как работает наш мозг. С каждым годом появляются новые возможности для применения МКИ в самых разных сферах.
Разработка ведется в рамках научно-исследовательской политики программы развития СПбГЭТУ «ЛЭТИ» «Приоритет 2030».
Напомним, что несколькими днями ранее мы уже рассказывали нашим читателям, что инновационную технологию 3D-печати магнитов разработали на Урале.
- Роман Земляков
- pxhere.com
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас

Полный эстонской нефти танкер провела мимо России целая флотилия
Сразу три буксира обеспечили проводку танкера с эстонской нефтью из самого восточного порта страны мимо территориальных вод России, который считается...

Турецкой АЭС «Росатома» ставят палки в колеса, замедляя работы на трех блоках
Из-за задержки с поступлением $ 7 млрд замедляется строительство трех энергоблоков АЭС «Аккую», которую строит «Росатом». Как сообщает «Московский комсомолец —...

В России выпустили модернизированный сельскохозяйственный трактор КРТ-240
Компания «Ригель АВ-Белгород» представила новую модель трактора КРТ-240. Познакомиться с новинкой представители агропрома смогли на выставке «Золотая Нива...

Интерес соседей России к Волге простирается аж до Черного моря
Как-то уходит в сторону, что сверхинтенсивные нефтегазовые разработки в казахстанском секторе Каспия, сопредельном с волжской дельтой и российским сектором...

Российские работодатели начали отказываться от эйджизма
Хорошая новость для людей пожилого возраста, которые хотят сменить место работы или не желают уходить на заслуженный отдых: растет спрос на возрастных...

Колоссальные убытки «ОДК-Кузнецов»: космос под угрозой
Самарское предприятие «ОДК-Кузнецов», входящее в состав государственной корпорации «Ростех», продолжает сталкиваться с серьезными финансовыми трудностями. По...

Ваш банковский перевод заблокирован: в РФ усилили контроль за гражданами
С 1 июня 2025 года в России вступили в силу изменения в законе о противодействии легализации преступных доходов. Теперь Росфинмониторинг получил право...

Удар по гиганту: в РЖД показали тревожные цифры сокращения перевозок
Российские железные дороги опубликовали статистику грузоперевозок. Общее количество жд-доставок уменьшилось, что сигнализирует о замедлении экономической...

«Северсталь» не сможет полностью отказаться от зарубежного ПО
В мире, где цифровые технологии играют все более важную роль, компании стремятся к внедрению отечественного программного обеспечения (ПО), что особенно...

Китай готов обрушить мировой автопром: дело в металлах
США, Европа и Япония бьют тревогу. Китай создал дефицит редкоземельных металлов для автомобильной промышленности – и уже есть первые пострадавшие: Ford и...

Сохранение советского наследия: в РФ начнут производство деталей для Як-42
Российское авиастроение продолжает наращивать потенциал и диверсифицировать производство. Завод «Сокол» получил одобрение на выпуск важных компонентов для...

Скандал в ВПК: Минобороны отсудило у «Туполева» миллиарды по тайному иску
Арбитражный суд Москвы удовлетворил иск Минобороны РФ к АО «Туполев» на несколько миллиардов рублей. Причина взыскания и точные детали спора остаются...

Взрыв цен и очереди: в Петербурге ожидают последствий удара по мигрантам
В Петербурге готовятся к повышению цен на доставку и такси из-за запрета на работу мигрантов. Представители отрасли рассказали об ожидаемых последствиях...

Путин выполнит обещание: Олигархи нацеливаются на «жирный» завод
ЧЭМК, отравляющий город, выводят из Челябинска, завод построят на новом месте...

Обрежут западные крылья: в Аэрофлоте предложили шок-меры для авиапрома
«Аэрофлот» выдвинул инициативу о введении обязательной доли закупок самолетов российского производства для авиакомпаний, эксплуатирующих зарубежные модели....

Испытан «русский старлинк», Илону Маску придется подвинуться
У Запада шок — в России разработаны собственные технологии спутниковой 5G связи...